PLASTICITY (STRENGTH) CONDITION FOR A REINFORCED LAYER

Yu. V, Nemirovskii

A large number of studies, a summary of which may be found in [1-4], have been devoted to con~
structing strength and plasticity criteria for anisotropic materials, All these criteria have been formulated
without regard to the nature of the anisotropy, and the admissibility of their use for particular classes of
materials requires careful analysis.

The mechanical properties of the reinforced materials obviously depend on the properties of the
bonding material and the reinforcing element materials, on the nature of the reinforcing and its percentage
content, All these dependences must be reflected in one form or another in the plasticity conditions.

An approximate account for such relations can be made by introducing, as in [3, 4], a sufficient
number of experimentally determined material constants into some hypothetical plasticity condition. We
note that for any change of the composition materials, nature of the reinforcing, or its percentage content
the need arises for new experiments to determine these constants,

Another approach is to construct a model of the reinforced material, accounting for its structure,
properties of the elements,and peculiarities of their behavior, and then determine the plasticity condition
for the material composition which is reflected by the adopted model.

This approach, used in the following, opens up the way to regulation of the reinforcing in order to
improve the strength properties of the reinforced materials.

I. By reinforced layer we mean a comparatively thin plate consisting of an isotropic material with
a reinforcing layer imbedded in it. The reinforcing layer is a network of fine, one-dimensional filaments
arranged in directions forming the angles otk = 1, 2, . . . , m) with the direction which we hereafter denote
by the subscript 1,

We assume that:

1. The material of all the elements comprising the reinforced layer will be rigid ideally-plastic
and in the general case different for each element;

2. The number of reinforcing elements is sufficiently large that the reinforced layer can be con-
sidered quasiuniform;

3. In regard to composition joining we assume ideal adhesion, i.e., absence of slip between the
binding and reinforcing elements;

4. The distance between the reinforcing elements is sufficiently large in comparison with their
dimensions, and at the same time sufficiently small in comparison with the dimensions of the plate, that
local effects near the filaments and irregularity of the deformation between two neighboring filaments can
be neglected;

5. We postulate that each filament, if it belongs to the system of filaments embedded into the material,
is capable of withstanding both tensile and compressive forces, However, since some instability mode
may arise under the action of a compressive force, the elastic (strength) limits of the filaments in tension
and compression are considered to be different.
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Let wiz be the density of the reinforcing filaments in the directions forming
the angles oy with the direction 1, let wy be the density of the reinforcing layer
£ | with respect to the plate thickness, h the thickness of the reinforced layer. We

,‘j’ denote the principal directions of the orthogonal coordinate system in the plane of
the plate by the subscripts 1 and 2, Then the internal forces in the composite layer
are

o5 = 65" + D) ouSulinle, i,j=1,2
Fig, 1 )
oy =Tilh, Lyp=cosoy, bLy=sina, 0 o<n (1,1)
nka
o= e=1-o

Here Tjj are forces, 0jj° are the stresses in the filler, o) are the stresses in the reinforcing fila-
ments, Fi are the areas of the reinforcing element cross sections, ni is the number of reinforcing element
filaments with index k on the segment AF (Fig. 1),

For small deformations, on the basis of the assumption of absence of sliding we obtain the following
relationships between the deformation rates €k of the angled reinforcement elements and the deformation
rates €jj of the filler layer

&p = eylu® 1+ eiliplan -+ Eaolap? (1.2)

Let us assume that the filler material is isotropic, has in the general case different properties in
tension and compression, and obeys the Balandin plasticity condition [5]. Then for the plane stress state
of an ideally rigid plastic body [5, 6] we have

031" — 01,°050° + 05, 4 303, — (00” — 05")  (01° + 05,°) — 07057 =0 (1.3)
g1y = M203,° — 0° + GgT—037), € = A (20p,° — 0y,° T 0" — 07) & = 6hoy,° (1.4)
Here ooi are the yield limits of the binder in tension (plus) and compression (minus), A is a positive

multiplier.

Equation (1.3) will be satisfied identically if we take

0y° - O — 07 = s Vg% c0s (0 — 1/6_5_1:) sin @, 03" =1/4 ]/go'ocos @ (1.5)
(7220 + 0'0+ — 0y = 2/3V3 T COS (e+ 1/G :ﬂ:) sin P
—_LIn, 0o, 0g* = (057)* + (9¢7)* — O¢" 0o~ (1.6)

From (1.4) we have
g1y = 2h0y cos (8 — g m) sing, ey = 2ho, cos (0 + Y3 m) sin @, €p= 2V'3 As, cos @ 1.7)
We see from (1.6) and (1,7) that

gy > 0, 2 >0 for —Ygm <0 <{1gm
ey <0, €3 O for o<l +06<m
&1 > 0, 8gs <L O for Yo <8< sm (1.8)
gy, < 0, g >0 for —3en<0<—1gn

g >0 for 0o <CY,y m, e <0 for Lo

(1.9)
From (1.1) and (1.3), considering the conditions for uniaxiality of the stress-strain state in the
reinforcing elements and the possibilities for the signs of the strains in these elements in accordance
with (1.8), (1,9), (1.2), in the general case we obtain the limiting relations
(0gy — ky1)? — (033 — k1) (Gap — Kza) - (Opp — Kop)?+ 3 (01 — kop)? = (a o4)®
ka=a(s"— ") + D) oasortly?,  Fn= D 0uaEoE lula (1.10)
thl k=1
koo == a (6p™ — 6,7) - Z 0306, E L2, at=1, a = —1
k=1

Here o} * are the yield limits of the reinforcing elements in tension (+) and compression (-).
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The question of the choice of the upper signs for crkDE is resolved in accordance with the signs of the
strains €¢. The regions of choice of particular signs as a function of the parameters 8 and ¢ for given
values of the reinforcement angles ¢ can be established using (1.2), (1.8), (1.9).

Since in the general case the quantities aki are independent of one another, (1.10) in the ¢y, 99, T3
stress space defines 2™ ellipsoids, which are obtained by a parallel shift of the ellipsoid (1.3).

In addition to the 1imiting relations (1.10), which correspond to full utilization of the carrying
capability of all the reinforcing elements and the filler layer, several limiting relations are possible
which correspond to the stiffness conditions of the reinforcing elements of any direction,

Assume the reinforcing elements which form the angles oy with the axis 1 remain rigid, In this
case the stress ¢), remains undefined and the strain rate & = 0, Consequently, from (1.2) and (1.7)

[Lp? cos (8 — tfy ) + lyp? cos (8 + 4, )] sin ¢ + V3 Lulrcos ¢ =0 (1.17)

For a given value of the reinforcement angle ¢y this equation makes it possible to find ¢ in terms
of 6, Then (1.1) define the three quantities o1y, 093, 01 in terms of the two parameters 6 and o and,
consequently, yield the final limiting relation between the quantities oy, 099, 019 We shall omit here the
further calculations leading to exclusion of the parameters 6 and oy, It is not difficult to recover these
expressions if necessary. The corresponding operations will be demonstrated below using particular
examples. In so doing we must bear in mind that in (1.1) we must set op = ani crn:E for all ¢ and ¢ for
which ap =&y > 0, i.e.,

an® ([Lin? 008 (8 — Ygmt) + Ly cos (0 + Ysm)] sin @ + V'3 Linln cos @} >0,

a,*=-+1,n=1,2,...,m, n=k (1.12)

In the oy, 019, 099 space the limiting relations corresponding to this case define cylindrical surfaces
with generators parallel to the direction of the rigid filaments,

Finally, the case is possible in which some two families of the reinforcing filaments remain rigid.
Equating in this case €1 to zero for two concrete values of k (for example 1 and 2) and using (1.2) and (1.7)
we define the parameters & and ¢. Then the quantities 01j°% €, and ok (for k > 2) become known, while
the stresses oy and oy in the rigid filaments remain undetermined. Then, excluding ¢y and o from (1.1)
we obtain a linear relation between the quantities 0ij, which defines a plane in the o013, 013, 039 Space.
Moreover the strain rate vector with the components €ij will be orthogonal to this plane.

We see from (1.3) and (1.4) that for an isotropic binder the limit surface in stress space has the
form of a convex ellipsoid and the associated strain law corresponds to the condition of orthogonality of
the strainrate vector with the components €44, €99, €49 to the elliposid at a given point on the surface,

For the reinforced layer the combined limit surface, being convex, consists in the general case of a
large number of pieces of different analytic surfaces,and the strain law, as we see from the construction
of the 1imit surface, again corresponds to the condition of orthogonality of the strain rate vector with the
components €44, €49, €99 to this surface on each of its pieces.

II. Let us examine the particular case in which
m=40p=0,a;=0,0, =0/2,0; =04 =0, ag =0, 0g =T —a
Then
©303l305 = — 040slyalos, O3 =0y =0, kyp =0, 0,° =0, ¢ =x/2
The angled reinforcement element stiffness condition (1,11) takes the form
cos?q cos (0 — 1/g ) 4 sin%q cos (B 4 Y/;m) =0 2.1)

This equality is possible only for ¥ 7 <6 <%, mor =%/, 7 <6< =Y, 7. But in the first case £4; > 0,
€99 < 0,and oy =~ oyt 03 = — ", while in the second case €11<0,€p0n> 0,and oy =—017, 0y = oo,

Substituting these values together with (1.5) into the first two equalities (1.1) and excluding ¢ = o3 = 0y
and ¢ with the aid of (2,1), we obtain

logs + a (06" — 0¢7) &= 30,7 cos® ¢ — [oy; + @ (657 — 647)

T w,0,%] sin? g = IF i/elfgao‘o (1 4+ 3 cos? 2q) (2.2)
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where the upper signs correspond to values of the parameter € from the interval
/e <6 <% ¢m the lower values are for those from the interval —5/; 1< 6 <=1/, m,

In the case of reinforcing elements which are stiff in the directions 1 and
2, we have similarly

0u= T 0;0F + a (o) — 6" F sV 3 ap) (i = 1,2) (2.3)

Thus, in the particular caseinquestion the 1imit curve in the o4, T99
plane is defined by (1.10), (2.2), 2.3).

The form of this curve is shown schematically by the continuous curve in
Fig, 2. Here the arcs MA, BC, DE, FG, HJ, KL are defined by (1,10), the
straight lines AB and GH, ML, and EF are defined by (2.3), and the straight

s 14 lines CD and JK are defined by (2.2), If in a particular case the Tresca condi-
[//—J B & . tion [5] is used as the basic plasticity condition for the isotropic material of
/7/ S the filler layer, the limit curve for the reinforced layer will have the octagon
p 7 o AKX form shown schematically in Fig. 2 by the dashed line [6].
F ame 7 In the absence of reinforcing elements in a particular direction, the
Fig. 3 corresponding pairs of straight lines in Fig, 2 degenerate into points, and the

arcs connected by them merge when extended, Thus, in the absence of the
angled reinforcement elements (w = 0) the straight lines DC and JK disappear; for wj = 0 the straight lines
AB and GH disappear. The suggested approach makes it possible to indicate the region of variation of the
reinforcement parameters and loads for which a particular portion of the limit curve or surface is
realized, and thereby makes it possible to regulate the nature of the structure reinforcement for the given
loading conditions, Thus, for example, for the straight line AB in Fig, 2 we have for oot = 0p” = 0

gy =0, &, =0, g3 =84 >0,
0y’ = 1/3]/300: 0y =04 = 0", —0," < o0y <0

So that . v
— 0,0, < 6y — 13V 364 @ — 200% costq < 0,05

For a given value of ¢y; this inequality defines the relationship between the reinforcement parameters
for which the longitudinal structure does not exhaust the load carrying capability.

III. Letus examine as the second example the particular case m =4, @y =0, @y = I/21r, ao+ =¢aq = op
o1 = 0, €41 = 0, which corresponds to the presence of rigid reinforcement in direction 1 in the absence of
the corresponding load. In this case part of the 1imit relations are defined by the equalities

(G20 — Fgg)® -+ 4 {01, — Ep)® = /5 (a0,)? (3.1)
while the remaining relations correspond to the cases €3=10, €4 =0, €99 = 0,

Let us examine these cases in more detail. We have for o4y =0,841=0

£ = gy sinay (1 — 2cigQeigas), 8 = &, sin’e, (1 — 2eig @ cigay) (3.2)
= Ttlexo) 2£3) , ou°=— _1- o0’ = ____V?’Go Sing, o’ = __1{350 cos @ ©.3)
6 2 3 3
Let 0 =°/¢m, Then €95 < 0, 09 = — g, If in this case €3 = 0, we obtain from (3.2)
¢ =g =Y,m — are tg (Vs tgog), & = ey sin®a, {1 — 2otgp, ctga,) (3.4)

For a known value of ajthe sign of & is known, and then the stress o, is equal to the yield limit in
tension or compression.

Considering this situation and substituting (3.3) for ¢ = ¢4 into (1.1), after excluding o3 we obtain
the limit relation

2 V'3 (612 Sin ota — 622 008 %g) = 2 (260 5in @1 4 V. 3wpse™ — ¥ Fogos 5in? ag) cos ag + (260 o5 Pu -+ V 3wy sin 2a4) sin g (3.5)
Similarly, in the case €, = 0 we obtain

2 V'3 (o1 Sint @ — 622 608 2} =2 (265 SIn @y -+ ¥ Bans™ — ¥V Fws0s sin? az) cos wg 1 (2008 Pz - V Bmacs sin 225 sin oy {3.6)
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Here ¢, equals

278 mmm
e ] Py =1y m — are tg (Y, tgay)

and o3 equals the yield limit in tension or compression, depending on
the sign of the quantity

., \\A 83 = g5 sinotz (1 — 2 ctg @, ctg o) (3.7

In the same fashion we obtain for 8 = ¥ 7 the two limit relations
N 2 V3 (oncosag—oi sinay) =2 (26 sin @ + V Jausst

cs + V 3w4s5in 2%4) sin as - ¥ Bayss sin® ag) cos az — (264 C0S P

~L 4 V Bwyos sin 244) sin og (3.8)

0z N 2 V3 (omecosay —Giosin ag) =2 (2050 @; 4 ¥ 3ws5:"

' | = \\3\%\ A + V 30404 Sin® as) cos &g — (250 COS Py + V.?:o)?% s'in Zafg) sin u4. (3.9)

- 70 Here o3, 04 are also equal fo the yield limits in tension or

compression, depending on the signs of the quantities €3, €4, defined
by (3.4) and (3.7). Here we must bear in mind that in the present
case €9 > 0,

In the case €99 = 0, €44 = 0 we have

P =0, &, 0,° =00’ = 05 — 0", g1,° = - ;¥ 304,28, =Y, sib 23, & =/, sin 2a,

reinforcement angles o3, a4 the signs of €4 and €4, and therefore the
qguantities o3, oy as well, are known in the 1limit state. And in this
0.6 case the limit state

.2 \ and the stresses oy, 0y are indeterminate. For a known value of the

Opa = 2= Y3V 3a0, 4+ Y/, (005 sin 205 + 0,04 sin 2a,) (3.10)

Here ¢3 and gy are equal to the yield limits in tension and
g \ compression, depending on the signs of €5 and €,,

The form of the limit curve in the oy, 0y plane for the parti-
AN cular case in question is shown schematically in Fig. 3. The straight
—aiL | \ lines AB and GH are defined by (3.10), the straight lines CD, EF, JK,
g §74 50 «° 47 LM are defined by (3.5), (3.6), (3.8), (3.9), and the curves MA, BC,
Fig. 5 DE, FG, HJ, KL are defined by (3.1).

Here, for each segment of the limit curve we can indicate the
corresponding region of variation of the loads and reinforcement
parameters, For example, let us examine the horizontal straight line segment AB in Fig. 3 in the case
0= 01151/2#, 1/2 T= ay=7, Then it is not difficult to see that ¢y1° = 0, o3 = 03+, oL =—m ", 09°=0,—0y =
oy =047, —0,"=0 =o' and, consequently,
— 0,0 < 005" costey - 0,5, cos? o, < @00
— 0057 K Oy — 0057 sina, + 0,0, sin®, < 0,057
If, in addition, we take

U =0, 0= — 0,0 = 0, = 0
63t = koygT =67 = kg = 01" = ko~ = oot = koy <)

we obtain

—ok Kol — k) costa o
005k < Ogy — 0,0, (1 — k) sinfo < 0,0,F
Similar inequalities can be obtained for each of the segments of the limit curve in Fig., 3,

Let us examine the case of a unidirectional reinforced material which is stretched by a force which
forms the angle « with the reinforcement direction. Then, setting in (1.1) wy =0 =2, ..., m), w; = w,
01 =0, 019 = oyp = 0, &1 = & and considering (1.5), we obtain for gy = 6y~ = o

oy =2,V 30, acos (8 — g m) sin ¢ + o cos? @ (4.1)
2/ Y Tasyacos @ + Vs m) sin ¢ + 0o sin? a =0, /¥ 3ac,cos@ + 3 0o sin®a =0 (4.2)

Excluding wo from (4,2), we obtain (o = V,m, ¢= 1, m
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2 cos 0+ Yem) =citg ptg a “4.3)

If the reinforcing elements remain rigid, from the condition &4 = 0 with
account for (1.2) and (1,7) we obtain

V3tgh =1+ 6 cos® a (4.4)

Equations (4.1), (4.3), (4.4) together define the limit tensile force of the
reinforced layer in the case in which thereinforcing elements remain rigid.
The curve of oy1/a gy versus « calculated from these equations is shown by the
continuous curve in Fig, 4, With the aid of (4.2), (4.3), (4.4) we can now calculate
as a function of « the magnitude of the forces which arise in this case in the
reinforcing elements, The corresponding curve is shown in Fig, 5. This curve
defines the maximal rational strength of the reinforcing elements. Further
increase of their strength does not lead to increase of the material strength,
Therefore the continuous curve in Fig, 4 will be the theoretical material strength.
We note that in (4.3) and (4.4) it was assumed that @ =Y, o='/om, If a = 1/,m,
@ = 1/27T, then it is easy to see that we have

611 = + %3V 50, w6 =TV 36ea

If for given reinforcement density and angle the yield (strength) limit of
the reinforcing element material is such that the quantity we'/ac, lies below
the curve in Fig. 5, then exhaustion of the load carrying capability of the rein-
forced layer is accompanied by exhaustion of the load carrying capability of the
reinforcing elements, In this case we obtain the limit load for a given value of
wo/acy with the aid of (4.1), (4.3), and the second equation (4.2). The correspond-
ing curves for wo/agy = 0.2, 0.6, 1.0, 1.4 are shown dashed in Fig. 4,

It may be shown similarly that the shear yield limit in the case of rigid
reinforcing elements is defined by the equality

G612 4sim@cosh

asy 3 sin 20

In this case the quantities @, 6, and wo/ag, are found from the equalities

tg0 =) 3cos20, ctgp=

_ {1 4-3cos®2x) cos §

b w0 / agy = ~ 2 singcos B
V3sin?a ’ ®

The corresponding theoretical strength curves are shown by the continuous curves in Figs.
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However, if exhaustion of the load carrying capability of the reinforced layer is accompanied by
exhaustion of the load carrying capability of the reinforcing elements, then the yield (strength) limit for
the given values of wo/acy is defined by the equality

610/ a0y =13V 3 cos ¢ + wo / ag, sin 2a

where ¢ is found from the equality

¢ = — arc sin 00 / 202 cos 0, 0 = arc tg (V'3 cos 2a)

The corresponding curves for wa/ag = 0.2, 0,6, 1.0 are shown dashed in Fig. 6.

It was assumed above that o = 0, 1/2'1r, 7, However,'if a = 0, 1/2 T, T, it is easy to see that

O1p =i—V§an7 wo =0
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